Suatu fungsi boolean bisa dinyatakan dalam tabel kebenaran. Suatu tabel kebenaran untuk fungsi boolean merupakan daftar semua kombinasi angka-angka biner 0 dan 1 yang diberikan ke variabel-variabel biner dan daftar yang memperlihatkan nilai fungsi untuk masing-masing kombinasi biner.Aljabar boolean mempunyai 2 fungsi berbeda yang saling berhubungan. Dalam arti luas, aljabar boolean berarti suatu jenis simbol-simbol yang ditemukan oleh George Boole untuk memanipulasi nilai-nilai kebenaran logika secara aljabar. Dalam hal ini aljabar boolean cocok untuk diaplikasikan dalam komputer. Disisi lain, aljabar boolean juga merupakan suatu struktur aljabar yang operasi-operasinya memenuhi aturan tertentu.
PEMBUKTIAN PERSAMAAN ALJABAR BOLEAN.
T1. Hukum Komutatif
(a). A+B = B+A
(b). A.B = B.A
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhW2I7-AcKpsZ1LzNuTqQ0ddvX9C9TqAT7r9fc24Ze1L48DVmhhiXOPL-HZKoubLod8FHYrfrTNO6kMAkVX2P_C5ZMwzC9RLk9qLj-bsjyCahIplOUEnYTOOViDw0gc0m7WhkfWHHWfDrQ/s320/T1.jpg)
a. (A+B)+C = A+(B+C)
b. (AB) C = A (BC)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgGhOHAcG2Hfd7FbTbGHRTVn4Wtqvw1MFlOKj41jTwFMHhD9K4eAppVkKRSCA9ci6dm3O8DdZcDlCf7b-5KNA6ZwtaAwEl9wZBn6jcc3K4vETE094YTxP07xHcOe4LKXc_ZZXPT3GpbiKE/s320/T2.jpg)
A(B+C) = AB + AC
b. A +(BC) = (A+B) (A+C)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgH4pWGJ9V4Idzg3U4CH3_Q3vaEeoG9Tz-hrj3HzS_2sNNKVY0qB4sEomDliGWBXprPtXs8j9WOfyrW5lq3iHTzcf60R5lM6jKNN6PdnmIC8sA4i3RapPE2Zaj_sjVNOOrOq-lKduChJak/s320/T3.jpg)
a. A + A = A
b. A A = A
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgpxuJkdmrETiZ5aRiwxkdWeVSWF-VuPHk50yAoFwTzp85pCztd_NZpoSbTN01g1MxASf47mSQAsKjw93Hd8h9WStc62Zg7aSBWvALtiX9_9n3KFW3HwF9as7nqTXrNRZTadU66kskm9NM/s320/T4.jpg)
a. AB+AB'=A
b. (A+B)(A+B')= A
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjzbo0SgXQ9G0h-EmY7wpiYvo_Fw9_CPNKT0wHaOoTwFTFli-u76uashBrzHVfiNVGS6UzP9SaOPuoYwKbm0DIjLeyjFnZCq6N4docJ7dHe5bn8HH5-OnNsdAjRS4BQx3vSh8D2R1F0xVo/s320/T5.jpg)
T6. Hukum Redudansi
a. A + A B = A
b. A (A + B) = A
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjkxMU-XgXC5_ZTk7IrHfKGnBA1M_opTa_cT9m1VauDxFtsA8tKb5sGfD6BM4r_Dsq52ca6Y_sII99Y59NxuIBNMBI_X7E9xZ53J3itg2D8VsqiDhZ3pYBAtAQlxd1tby7YCfSjcBa7edo/s320/T6.jpg)
T7
a. 0 + A = A
b. 0 A = 0
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhyyjHBQQ_SRsD6g_G-PJDRNUuTSKHhqfRcyJTfK0kubfHdiuTQzBs1q3eFBdZna3h4PDX_F0FAA1RevLHoCwmaMkk6aQgLGNaMUmlqKdvsgzb5on2jPT2iJE0K5m0kXJ-Uac-R_e7YAQY/s320/T7.jpg)
T8
a. 1 + A = 1
b. (b) 1 A = A
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjWVdoyJ0F9CQgBHGnRIE8t1g7KRA-AXw1yt0M4n8eM4mqq8BPelHMPyRJh9c5bbn02pBNjkaKyn5R4N0nOkET4sNKgQVF-RAGbsMxHMYRD8hI95XA6EcWB4SEO4xUSpM74zpHZ11B3baI/s320/T8.jpg)
T9a. A' +A=1
b. A' A = 0
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgZ9lOoi52jbNgTdHnvGy7dBRa6zmCtLbkibb4hqm8IAnVRHeDcL60LUn_62tn9PEHjlFGWyskEPlR3xPrztIvG4EElXumGjsQYTmznJAXOHFfX6vEBfA-4RCAs6n45CMt1EfTv4J-tBG0/s320/T9.jpg)
T10a. A+A' B= A+B
b. A(A' + B) = AB
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEixIc9dbazEL-KOl5UGcvOZpTy3x1rGirYmEbsFiNvmoelJlJfPXI-dx4Npf_KZSQswvL1mK2RBiGRzHL-gwuw_OncuxXShY1tb5BQfBZZr4ZRG8Cn5dLdS4RlrooykAjWKyJnXKY_Hh6s/s320/T10.jpg)
T11. TheoremaDe Morgan's
a. (A+B)' A' B'
b. (AB)' = A' + B'
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh99G3wVkhz3ETfysxBNgtwJGBjFYjpDbnGB9xHwzYotsfxfXkfMs3-1ZC1B7698yNzh6k7wpFloYDwM0OthVHAjqVyCV042gPkeKX-Yswcd_0FO5eHeN41-oi5bATzQIdIgsWbcIiZgR8/s320/T11.jpg)
0 komentar:
Posting Komentar